Recent Radiance Field Papers
Search...
Abstract
While dynamic Gaussian Splatting has driven significant advances in free-viewpoint video, maintaining its rendering quality with a small memory footprint for efficient streaming transmission still presents an ongoing challenge. Existing streaming dynamic Gaussian Splatting compression methods typically leverage a latent representation to drive the neural network for predicting Gaussian residuals between frames. Their core latent representations can be categorized into structured grid-based and unstructured point-based paradigms. However, the former incurs significant parameter redundancy by inevitably modeling unoccupied space, while the latter suffers from limited compactness as it fails to exploit local correlations. To relieve these limitations, we propose HPC, a novel streaming dynamic Gaussian Splatting compression framework. It employs a hierarchical point-based latent representation that operates on a per-Gaussian basis to avoid parameter redundancy in unoccupied space. Guided by a tailored aggregation scheme, these latent points achieve high compactness with low spatial redundancy. To improve compression efficiency, we further undertake the first investigation to compress neural networks for streaming dynamic Gaussian Splatting through mining and exploiting the inter-frame correlation of parameters. Combined with latent compression, this forms a fully end-to-end compression framework. Comprehensive experimental evaluations demonstrate that HPC substantially outperforms state-of-the-art methods. It achieves a storage reduction of 67% against its baseline while maintaining high reconstruction fidelity.
UrbanGS: A Scalable and Efficient Architecture for Geometrically Accurate Large-Scene Reconstruction
Abstract
While 3D Gaussian Splatting (3DGS) enables high-quality, real-time rendering for bounded scenes, its extension to large-scale urban environments gives rise to critical challenges in terms of geometric consistency, memory efficiency, and computational scalability. To address these issues, we present UrbanGS, a scalable reconstruction framework that effectively tackles these challenges for city-scale applications. First, we propose a Depth-Consistent D-Normal Regularization module. Unlike existing approaches that rely solely on monocular normal estimators, which can effectively update rotation parameters yet struggle to update position parameters, our method integrates D-Normal constraints with external depth supervision. This allows for comprehensive updates of all geometric parameters. By further incorporating an adaptive confidence weighting mechanism based on gradient consistency and inverse depth deviation, our approach significantly enhances multi-view depth alignment and geometric coherence, which effectively resolves the issue of geometric accuracy in complex large-scale scenes. To improve scalability, we introduce a Spatially Adaptive Gaussian Pruning (SAGP) strategy, which dynamically adjusts Gaussian density based on local geometric complexity and visibility to reduce redundancy. Additionally, a unified partitioning and view assignment scheme is designed to eliminate boundary artifacts and optimize computational load. Extensive experiments on multiple urban datasets demonstrate that UrbanGS achieves superior performance in rendering quality, geometric accuracy, and memory efficiency, providing a systematic solution for high-fidelity large-scale scene reconstruction.
Abstract
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
Abstract
Extending 3D Gaussian Splatting (3DGS) to 4D physical simulation remains challenging. Based on the Material Point Method (MPM), existing methods either rely on manual parameter tuning or distill dynamics from video diffusion models, limiting the generalization and optimization efficiency. Recent attempts using LLMs/VLMs suffer from a text/image-to-3D perceptual gap, yielding unstable physics behavior. In addition, they often ignore the surface structure of 3DGS, leading to implausible motion. We propose FastPhysGS, a fast and robust framework for physics-based dynamic 3DGS simulation:(1) Instance-aware Particle Filling (IPF) with Monte Carlo Importance Sampling (MCIS) to efficiently populate interior particles while preserving geometric fidelity; (2) Bidirectional Graph Decoupling Optimization (BGDO), an adaptive strategy that rapidly optimizes material parameters predicted from a VLM. Experiments show FastPhysGS achieves high-fidelity physical simulation in 1 minute using only 7 GB runtime memory, outperforming prior works with broad potential applications.
Abstract
We present VRGaussianAvatar, an integrated system that enables real-time full-body 3D Gaussian Splatting (3DGS) avatars in virtual reality using only head-mounted display (HMD) tracking signals. The system adopts a parallel pipeline with a VR Frontend and a GA Backend. The VR Frontend uses inverse kinematics to estimate full-body pose and streams the resulting pose along with stereo camera parameters to the backend. The GA Backend stereoscopically renders a 3DGS avatar reconstructed from a single image. To improve stereo rendering efficiency, we introduce Binocular Batching, which jointly processes left and right eye views in a single batched pass to reduce redundant computation and support high-resolution VR displays. We evaluate VRGaussianAvatar with quantitative performance tests and a within-subject user study against image- and video-based mesh avatar baselines. Results show that VRGaussianAvatar sustains interactive VR performance and yields higher perceived appearance similarity, embodiment, and plausibility. Project page and source code are available at https://vrgaussianavatar.github.io.
Abstract
3D Gaussian Splatting (3DGS) has recently emerged in computer vision as a promising rendering technique. By adapting the principles of Elliptical Weighted Average (EWA) splatting to a modern differentiable pipeline, 3DGS enables real-time, high-quality novel view synthesis. Building upon this, R2-Gaussian extended the 3DGS paradigm to tomographic reconstruction by rectifying integration bias, achieving state-of-the-art performance in computed tomography (CT). To enable differentiability, R2-Gaussian adopts a local affine approximation: each 3D Gaussian is locally mapped to a 2D Gaussian on the detector and composed via alpha blending to form projections. However, the affine approximation can degrade reconstruction quantitative accuracy and complicate the incorporation of nonlinear geometric corrections. To address these limitations, we propose a tomographic reconstruction framework based on 3D Gaussian ray tracing. Our approach provides two key advantages over splatting-based models: (i) it computes the line integral through 3D Gaussian primitives analytically, avoiding the local affine collapse and thus yielding a more physically consistent forward projection model; and (ii) the ray-tracing formulation gives explicit control over ray origins and directions, which facilitates the precise application of nonlinear geometric corrections, e.g., arc-correction used in positron emission tomography (PET). These properties extend the applicability of Gaussian-based reconstruction to a wider range of realistic tomography systems while improving projection accuracy.
Abstract
3D style transfer refers to the artistic stylization of 3D assets based on reference style images. Recently, 3DGS-based stylization methods have drawn considerable attention, primarily due to their markedly enhanced training and rendering speeds. However, a vital challenge for 3D style transfer is to strike a balance between the content and the patterns and colors of the style. Although the existing methods strive to achieve relatively balanced outcomes, the fixed-output paradigm struggles to adapt to the diverse content-style balance requirements from different users. In this work, we introduce a creative intensity-tunable 3D style transfer paradigm, dubbed \textbf{Tune-Your-Style}, which allows users to flexibly adjust the style intensity injected into the scene to match their desired content-style balance, thus enhancing the customizability of 3D style transfer. To achieve this goal, we first introduce Gaussian neurons to explicitly model the style intensity and parameterize a learnable style tuner to achieve intensity-tunable style injection. To facilitate the learning of tunable stylization, we further propose the tunable stylization guidance, which obtains multi-view consistent stylized views from diffusion models through cross-view style alignment, and then employs a two-stage optimization strategy to provide stable and efficient guidance by modulating the balance between full-style guidance from the stylized views and zero-style guidance from the initial rendering. Extensive experiments demonstrate that our method not only delivers visually appealing results, but also exhibits flexible customizability for 3D style transfer. Project page is available at https://zhao-yian.github.io/TuneStyle.
Abstract
Generating realistic 3D scenes from text is crucial for immersive applications like VR, AR, and gaming. While text-driven approaches promise efficiency, existing methods suffer from limited 3D-text data and inconsistent multi-view stitching, resulting in overly simplistic scenes. To address this, we propose PSGS, a two-stage framework for high-fidelity panoramic scene generation. First, a novel two-layer optimization architecture generates semantically coherent panoramas: a layout reasoning layer parses text into structured spatial relationships, while a self-optimization layer refines visual details via iterative MLLM feedback. Second, our panorama sliding mechanism initializes globally consistent 3D Gaussian Splatting point clouds by strategically sampling overlapping perspectives. By incorporating depth and semantic coherence losses during training, we greatly improve the quality and detail fidelity of rendered scenes. Our experiments demonstrate that PSGS outperforms existing methods in panorama generation and produces more appealing 3D scenes, offering a robust solution for scalable immersive content creation.
Abstract
We propose 3DGS$^2$-TR,a second-order optimizer for accelerating the scene training problem in 3D Gaussian Splatting (3DGS). Unlike existing second-order approaches that rely on explicit or dense curvature representations, such as 3DGS-LM (Höllein et al., 2025) or 3DGS2 (Lan et al., 2025), our method approximates curvature using only the diagonal of the Hessian matrix, efficiently via Hutchinson's method. Our approach is fully matrix-free and has the same complexity as ADAM (Kingma, 2024), $O(n)$ in both computation and memory costs. To ensure stable optimization in the presence of strong nonlinearity in the 3DGS rasterization process, we introduce a parameter-wise trust-region technique based on the squared Hellinger distance, regularizing updates to Gaussian parameters. Under identical parameter initialization and without densification, 3DGS$^2$-TR is able to achieve better reconstruction quality on standard datasets, using 50% fewer training iterations compared to ADAM, while incurring less than 1GB of peak GPU memory overhead (17% more than ADAM and 85% less than 3DGS-LM), enabling scalability to very large scenes and potentially to distributed training settings.
Abstract
Recent reconstruction methods based on radiance field such as NeRF and 3DGS reproduce indoor scenes with high visual fidelity, but break down under scene editing due to baked illumination and the lack of explicit light transport. In contrast, physically based inverse rendering relies on mesh representations and path tracing, which enforce correct light transport but place strong requirements on geometric fidelity, becoming a practical bottleneck for real indoor scenes. In this work, we propose Emission-Aware Gaussians and Path Tracing (EAG-PT), aiming for physically based light transport with a unified 2D Gaussian representation. Our design is based on three cores: (1) using 2D Gaussians as a unified scene representation and transport-friendly geometry proxy that avoids reconstructed mesh, (2) explicitly separating emissive and non-emissive components during reconstruction for further scene editing, and (3) decoupling reconstruction from final rendering by using efficient single-bounce optimization and high-quality multi-bounce path tracing after scene editing. Experiments on synthetic and real indoor scenes show that EAG-PT produces more natural and physically consistent renders after editing than radiant scene reconstructions, while preserving finer geometric detail and avoiding mesh-induced artifacts compared to mesh-based inverse path tracing. These results suggest promising directions for future use in interior design, XR content creation, and embodied AI.