Recent Radiance Field Papers
Search...
Abstract
Extreme exposure degrades both the 3D map reconstruction and semantic segmentation accuracy, which is particularly detrimental to tightly-coupled systems. To achieve illumination invariance, we propose a novel semantic SLAM framework with two designs. First, the Intrinsic Appearance Normalization (IAN) module proactively disentangles the scene's intrinsic properties, such as albedo, from transient lighting. By learning a standardized, illumination-invariant appearance model, it assigns a stable and consistent color representation to each Gaussian primitive. Second, the Dynamic Radiance Balancing Loss (DRB-Loss) reactively handles frames with extreme exposure. It activates only when an image's exposure is poor, operating directly on the radiance field to guide targeted optimization. This prevents error accumulation from extreme lighting without compromising performance under normal conditions. The synergy between IAN's proactive invariance and DRB-Loss's reactive correction endows our system with unprecedented robustness. Evaluations on public datasets demonstrate state-of-the-art performance in camera tracking, map quality, and semantic and geometric accuracy.
Abstract
Channel state information (CSI) is essential for adaptive beamforming and maintaining robust links in wireless communication systems. However, acquiring CSI incurs significant overhead, consuming up to 25\% of spectrum resources in 5G networks due to frequent pilot transmissions at sub-millisecond intervals. Recent approaches aim to reduce this burden by reconstructing CSI from spatiotemporal RF measurements, such as signal strength and direction-of-arrival. While effective in offline settings, these methods often suffer from inference latencies in the 5--100~ms range, making them impractical for real-time systems. We present GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels, the first algorithm to break the 1 ms latency barrier while maintaining high accuracy. GSpaRC represents the RF environment using a compact set of 3D Gaussian primitives, each parameterized by a lightweight neural model augmented with physics-informed features such as distance-based attenuation. Unlike traditional vision-based splatting pipelines, GSpaRC is tailored for RF reception: it employs an equirectangular projection onto a hemispherical surface centered at the receiver to reflect omnidirectional antenna behavior. A custom CUDA pipeline enables fully parallelized directional sorting, splatting, and rendering across frequency and spatial dimensions. Evaluated on multiple RF datasets, GSpaRC achieves similar CSI reconstruction fidelity to recent state-of-the-art methods while reducing training and inference time by over an order of magnitude. By trading modest GPU computation for a substantial reduction in pilot overhead, GSpaRC enables scalable, low-latency channel estimation suitable for deployment in 5G and future wireless systems. The code is available here: \href{https://github.com/Nbhavyasai/GSpaRC-WirelessGaussianSplatting.git}{GSpaRC}.
Abstract
We present Splat-SAP, a feed-forward approach to render novel views of human-centered scenes from binocular cameras with large sparsity. Gaussian Splatting has shown its promising potential in rendering tasks, but it typically necessitates per-scene optimization with dense input views. Although some recent approaches achieve feed-forward Gaussian Splatting rendering through geometry priors obtained by multi-view stereo, such approaches still require largely overlapped input views to establish the geometry prior. To bridge this gap, we leverage pixel-wise point map reconstruction to represent geometry which is robust to large sparsity for its independent view modeling. In general, we propose a two-stage learning strategy. In stage 1, we transform the point map into real space via an iterative affinity learning process, which facilitates camera control in the following. In stage 2, we project point maps of two input views onto the target view plane and refine such geometry via stereo matching. Furthermore, we anchor Gaussian primitives on this refined plane in order to render high-quality images. As a metric representation, the scale-aware point map in stage 1 is trained in a self-supervised manner without 3D supervision and stage 2 is supervised with photo-metric loss. We collect multi-view human-centered data and demonstrate that our method improves both the stability of point map reconstruction and the visual quality of free-viewpoint rendering.
Abstract
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for 3D scenes, widely adopted due to its exceptional efficiency and high-fidelity visual quality. Given the significant value of 3DGS assets, recent works have introduced specialized watermarking schemes to ensure copyright protection and ownership verification. However, can existing 3D Gaussian watermarking approaches genuinely guarantee robust protection of the 3D assets? In this paper, for the first time, we systematically explore and validate possible vulnerabilities of 3DGS watermarking frameworks. We demonstrate that conventional watermark removal techniques designed for 2D images do not effectively generalize to the 3DGS scenario due to the specialized rendering pipeline and unique attributes of each gaussian primitives. Motivated by this insight, we propose GSPure, the first watermark purification framework specifically for 3DGS watermarking representations. By analyzing view-dependent rendering contributions and exploiting geometrically accurate feature clustering, GSPure precisely isolates and effectively removes watermark-related Gaussian primitives while preserving scene integrity. Extensive experiments demonstrate that our GSPure achieves the best watermark purification performance, reducing watermark PSNR by up to 16.34dB while minimizing degradation to original scene fidelity with less than 1dB PSNR loss. Moreover, it consistently outperforms existing methods in both effectiveness and generalization.
Abstract
Reconstructing high-resolution (HR) 3D Gaussian Splatting (3DGS) models from low-resolution (LR) inputs remains challenging due to the lack of fine-grained textures and geometry. Existing methods typically rely on pre-trained 2D super-resolution (2DSR) models to enhance textures, but suffer from 3D Gaussian ambiguity arising from cross-view inconsistencies and domain gaps inherent in 2DSR models. We propose IE-SRGS, a novel 3DGS SR paradigm that addresses this issue by jointly leveraging the complementary strengths of external 2DSR priors and internal 3DGS features. Specifically, we use 2DSR and depth estimation models to generate HR images and depth maps as external knowledge, and employ multi-scale 3DGS models to produce cross-view consistent, domain-adaptive counterparts as internal knowledge. A mask-guided fusion strategy is introduced to integrate these two sources and synergistically exploit their complementary strengths, effectively guiding the 3D Gaussian optimization toward high-fidelity reconstruction. Extensive experiments on both synthetic and real-world benchmarks show that IE-SRGS consistently outperforms state-of-the-art methods in both quantitative accuracy and visual fidelity.
Abstract
As a mainstream technique for 3D reconstruction, 3D Gaussian splatting (3DGS) has been applied in a wide range of applications and services. Recent studies have revealed critical vulnerabilities in this pipeline and introduced computation cost attacks that lead to malicious resource occupancies and even denial-of-service (DoS) conditions, thereby hindering the reliable deployment of 3DGS. In this paper, we propose the first effective and comprehensive black-box defense framework, named RemedyGS, against such computation cost attacks, safeguarding 3DGS reconstruction systems and services. Our pipeline comprises two key components: a detector to identify the attacked input images with poisoned textures and a purifier to recover the benign images from their attacked counterparts, mitigating the adverse effects of these attacks. Moreover, we incorporate adversarial training into the purifier to enforce distributional alignment between the recovered and original natural images, thereby enhancing the defense efficacy. Experimental results demonstrate that our framework effectively defends against white-box, black-box, and adaptive attacks in 3DGS systems, achieving state-of-the-art performance in both safety and utility.
Abstract
In the Virtual Reality (VR) gaming industry, maintaining immersion during real-world interruptions remains a challenge, particularly during transitions along the reality-virtuality continuum (RVC). Existing methods tend to rely on digital replicas or simple visual transitions, neglecting to address the aesthetic discontinuities between real and virtual environments, especially in highly stylized VR games. This paper introduces the Environment-Aware Stylized Transition (EAST) framework, which employs a novel style-transferred 3D Gaussian Splatting (3DGS) technique to transfer real-world interruptions into the virtual environment with seamless aesthetic consistency. Rather than merely transforming the real world into game-like visuals, EAST minimizes the disruptive impact of interruptions by integrating real-world elements within the framework. Qualitative user studies demonstrate significant enhancements in cognitive comfort and emotional continuity during transitions, while quantitative experiments highlight EAST's ability to maintain visual coherence across diverse VR styles.
Abstract
We present an interface between the Vienna \textit{Ab initio} Simulation Package (VASP) and the EPW software for calculating materials properties governed by electron-phonon (e-ph) interactions. Computation of the e-ph matrix elements with the finite-difference supercell approach in VASP and their fine-grid interpolation in EPW enable accurate modeling of temperature-dependent materials properties and phonon-assisted quantum processes with VASP's extensive library of exchange-correlation functionals and pseudopotentials. We demonstrate the functionality of the EPW-VASP interface by examining the superconducting gap and critical temperature in MgB$_2$ using the anisotropic Migdal-Eliashberg equations, and the carrier mobility in cubic BN using the \textit{ab initio} Boltzmann transport equation.
Abstract
We propose a model-independent test of CP violation in the scalar sector. We consider a heavy neutral scalar $h_2$ with tree-level couplings at the $h_2 V V$ and $h_2 h_1 Z$ vertices (with $V=W^{\pm},Z$), alongside the 125~GeV SM-like Higgs boson $h_1$. At future muon colliders (MuC), we exploit vector-boson-fusion (VBF) production of $h_2$ followed by the decay $h_2 \to Z h_1$. In our framework, observing the single process $V V \to h_2 \to Z h_1$ implies both relevant couplings are nonzero, which is sufficient to establish CP violation in the scalar sector. We simulate signal and backgrounds at $\sqrt{s}=3~(10)$ TeV with integrated luminosity $L=0.9~(10)~\mathrm{ab}^{-1}$. We then present the expected discovery sensitivites across the $(c_2,c_{12})$ parameter space (with the coupling parameters $c_{2}$ and $c_{12}$ defined in the text) for multiple $m_{h_2}$ hypotheses.
Abstract
Benchmarking has been the cornerstone of progress in computer vision, natural language processing, and the broader deep learning domain, driving algorithmic innovation through standardized datasets and reproducible evaluation protocols. The growing availability of large-scale Computational Fluid Dynamics (CFD) datasets has opened new opportunities for applying machine learning to aerodynamic and engineering design. Yet, despite this progress, there exists no standardized benchmark for large-scale numerical simulations in engineering design. In this work, we introduce CarBench, the first comprehensive benchmark dedicated to large-scale 3D car aerodynamics, performing a large-scale evaluation of state-of-the-art models on DrivAerNet++, the largest public dataset for automotive aerodynamics, containing over 8,000 high-fidelity car simulations. We assess eleven architectures spanning neural operator methods (e.g., Fourier Neural Operator), geometric deep learning (PointNet, RegDGCNN, PointMAE, PointTransformer), transformer-based neural solvers (Transolver, Transolver++, AB-UPT), and implicit field networks (TripNet). Beyond standard interpolation tasks, we perform cross-category experiments in which transformer-based solvers trained on a single car archetype are evaluated on unseen categories. Our analysis covers predictive accuracy, physical consistency, computational efficiency, and statistical uncertainty. To accelerate progress in data-driven engineering, we open-source the benchmark framework, including training pipelines, uncertainty estimation routines based on bootstrap resampling, and pretrained model weights, establishing the first reproducible foundation for large-scale learning from high-fidelity CFD simulations, available at https://github.com/Mohamedelrefaie/CarBench.