Recent Radiance Field Papers
Search...
Abstract
3D Gaussian Splatting (3DGS) has become increasingly popular in 3D scene reconstruction for its high visual accuracy. However, uncertainty estimation of 3DGS scenes remains underexplored and is crucial to downstream tasks such as asset extraction and scene completion. Since the appearance of 3D gaussians is view-dependent, the color of a gaussian can thus be certain from an angle and uncertain from another. We thus propose to model uncertainty in 3DGS as an additional view-dependent per-gaussian feature that can be modeled with spherical harmonics. This simple yet effective modeling is easily interpretable and can be integrated into the traditional 3DGS pipeline. It is also significantly faster than ensemble methods while maintaining high accuracy, as demonstrated in our experiments.
Abstract
Automated extraction of plant morphological traits is crucial for supporting crop breeding and agricultural management through high-throughput field phenotyping (HTFP). Solutions based on multi-view RGB images are attractive due to their scalability and affordability, enabling volumetric measurements that 2D approaches cannot directly capture. While advanced methods like Neural Radiance Fields (NeRFs) have shown promise, their application has been limited to counting or extracting traits from only a few plants or organs. Furthermore, accurately measuring complex structures like individual wheat heads-essential for studying crop yields-remains particularly challenging due to occlusions and the dense arrangement of crop canopies in field conditions. The recent development of 3D Gaussian Splatting (3DGS) offers a promising alternative for HTFP due to its high-quality reconstructions and explicit point-based representation. In this paper, we present Wheat3DGS, a novel approach that leverages 3DGS and the Segment Anything Model (SAM) for precise 3D instance segmentation and morphological measurement of hundreds of wheat heads automatically, representing the first application of 3DGS to HTFP. We validate the accuracy of wheat head extraction against high-resolution laser scan data, obtaining per-instance mean absolute percentage errors of 15.1%, 18.3%, and 40.2% for length, width, and volume. We provide additional comparisons to NeRF-based approaches and traditional Muti-View Stereo (MVS), demonstrating superior results. Our approach enables rapid, non-destructive measurements of key yield-related traits at scale, with significant implications for accelerating crop breeding and improving our understanding of wheat development.
Abstract
Reconstructing 3D assets from images, known as inverse rendering (IR), remains a challenging task due to its ill-posed nature. 3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities for novel view synthesis (NVS) tasks. Methods apply it to relighting by separating radiance into BRDF parameters and lighting, yet produce inferior relighting quality with artifacts and unnatural indirect illumination due to the limited capability of each Gaussian, which has constant material parameters and normal, alongside the absence of physical constraints for indirect lighting. In this paper, we present a novel framework called Spatially-vayring Gaussian Inverse Rendering (SVG-IR), aimed at enhancing both NVS and relighting quality. To this end, we propose a new representation-Spatially-varying Gaussian (SVG)-that allows per-Gaussian spatially varying parameters. This enhanced representation is complemented by a SVG splatting scheme akin to vertex/fragment shading in traditional graphics pipelines. Furthermore, we integrate a physically-based indirect lighting model, enabling more realistic relighting. The proposed SVG-IR framework significantly improves rendering quality, outperforming state-of-the-art NeRF-based methods by 2.5 dB in peak signal-to-noise ratio (PSNR) and surpassing existing Gaussian-based techniques by 3.5 dB in relighting tasks, all while maintaining a real-time rendering speed.
Abstract
Neural Radiance Fields (NeRF) have been widely adopted for reconstructing high quality 3D point clouds from 2D RGB images. However, the segmentation of these reconstructed 3D scenes is more essential for downstream tasks such as object counting, size estimation, and scene understanding. While segmentation on raw 3D point clouds using deep learning requires labor intensive and time-consuming manual annotation, directly training NeRF on binary masks also fails due to the absence of color and shading cues essential for geometry learning. We propose Invariant NeRF for Segmentation (InvNeRFSeg), a two step, zero change fine tuning strategy for 3D segmentation. We first train a standard NeRF on RGB images and then fine tune it using 2D segmentation masks without altering either the model architecture or loss function. This approach produces higher quality, cleaner segmented point clouds directly from the refined radiance field with minimal computational overhead or complexity. Field density analysis reveals consistent semantic refinement: densities of object regions increase while background densities are suppressed, ensuring clean and interpretable segmentations. We demonstrate InvNeRFSegs superior performance over both SA3D and FruitNeRF on both synthetic fruit and real world soybean datasets. This approach effectively extends 2D segmentation to high quality 3D segmentation.
Abstract
Recent advancements in 3D Gaussian Splatting have achieved impressive scalability and real-time rendering for large-scale scenes but often fall short in capturing fine-grained details. Conventional approaches that rely on relatively large covariance parameters tend to produce blurred representations, while directly reducing covariance sizes leads to sparsity. In this work, we introduce Micro-splatting (Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting), a novel framework designed to overcome these limitations. Our approach leverages a covariance regularization term to penalize excessively large Gaussians to ensure each splat remains compact and isotropic. This work implements an adaptive densification strategy that dynamically refines regions with high image gradients by lowering the splitting threshold, followed by loss function enhancement. This strategy results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency. Quantitative evaluations using metrics such as L1, L2, PSNR, SSIM, and LPIPS, alongside qualitative comparisons demonstrate that our method significantly enhances fine-details in 3D reconstructions.
Abstract
Traditional 3D content representations include dense point clouds that consume large amounts of data and hence network bandwidth, while newer representations such as neural radiance fields suffer from poor frame rates due to their non-standard volumetric rendering pipeline. 3D Gaussian splats (3DGS) can be seen as a generalization of point clouds that meet the best of both worlds, with high visual quality and efficient rendering for real-time frame rates. However, delivering 3DGS scenes from a hosting server to client devices is still challenging due to high network data consumption (e.g., 1.5 GB for a single scene). The goal of this work is to create an efficient 3D content delivery framework that allows users to view high quality 3D scenes with 3DGS as the underlying data representation. The main contributions of the paper are: (1) Creating new layered 3DGS scenes for efficient delivery, (2) Scheduling algorithms to choose what splats to download at what time, and (3) Trace-driven experiments from users wearing virtual reality headsets to evaluate the visual quality and latency. Our system for Layered 3D Gaussian Splats delivery L3GS demonstrates high visual quality, achieving 16.9% higher average SSIM compared to baselines, and also works with other compressed 3DGS representations.
Abstract
Simultaneous localization and mapping (SLAM) technology now has photorealistic mapping capabilities thanks to the real-time high-fidelity rendering capability of 3D Gaussian splatting (3DGS). However, due to the static representation of scenes, current 3DGS-based SLAM encounters issues with pose drift and failure to reconstruct accurate maps in dynamic environments. To address this problem, we present D4DGS-SLAM, the first SLAM method based on 4DGS map representation for dynamic environments. By incorporating the temporal dimension into scene representation, D4DGS-SLAM enables high-quality reconstruction of dynamic scenes. Utilizing the dynamics-aware InfoModule, we can obtain the dynamics, visibility, and reliability of scene points, and filter stable static points for tracking accordingly. When optimizing Gaussian points, we apply different isotropic regularization terms to Gaussians with varying dynamic characteristics. Experimental results on real-world dynamic scene datasets demonstrate that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
Abstract
Gaussian Splatting (GS) has recently marked a significant advancement in 3D reconstruction, delivering both rapid rendering and high-quality results. However, existing 3DGS methods pose challenges in understanding underlying 3D semantics, which hinders model controllability and interpretability. To address it, we propose an interpretable single-view 3DGS framework, termed 3DisGS, to discover both coarse- and fine-grained 3D semantics via hierarchical disentangled representation learning (DRL). Specifically, the model employs a dual-branch architecture, consisting of a point cloud initialization branch and a triplane-Gaussian generation branch, to achieve coarse-grained disentanglement by separating 3D geometry and visual appearance features. Subsequently, fine-grained semantic representations within each modality are further discovered through DRL-based encoder-adapters. To our knowledge, this is the first work to achieve unsupervised interpretable 3DGS. Evaluations indicate that our model achieves 3D disentanglement while preserving high-quality and rapid reconstruction.
Abstract
We present WildGS-SLAM, a robust and efficient monocular RGB SLAM system designed to handle dynamic environments by leveraging uncertainty-aware geometric mapping. Unlike traditional SLAM systems, which assume static scenes, our approach integrates depth and uncertainty information to enhance tracking, mapping, and rendering performance in the presence of moving objects. We introduce an uncertainty map, predicted by a shallow multi-layer perceptron and DINOv2 features, to guide dynamic object removal during both tracking and mapping. This uncertainty map enhances dense bundle adjustment and Gaussian map optimization, improving reconstruction accuracy. Our system is evaluated on multiple datasets and demonstrates artifact-free view synthesis. Results showcase WildGS-SLAM's superior performance in dynamic environments compared to state-of-the-art methods.
Abstract
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in 3D reconstruction, achieving high-quality results with real-time radiance field rendering. However, a key challenge is the substantial storage cost: reconstructing a single scene typically requires millions of Gaussian splats, each represented by 59 floating-point parameters, resulting in approximately 1 GB of memory. To address this challenge, we propose a compression method by building separate attribute codebooks and storing only discrete code indices. Specifically, we employ noise-substituted vector quantization technique to jointly train the codebooks and model features, ensuring consistency between gradient descent optimization and parameter discretization. Our method reduces the memory consumption efficiently (around $45\times$) while maintaining competitive reconstruction quality on standard 3D benchmark scenes. Experiments on different codebook sizes show the trade-off between compression ratio and image quality. Furthermore, the trained compressed model remains fully compatible with popular 3DGS viewers and enables faster rendering speed, making it well-suited for practical applications.