Recent Radiance Field Papers
Search...
Abstract
Visual policy design is crucial for aerial navigation. However, state-of-the-art visual policies often overfit to a single track and their performance degrades when track geometry changes. We develop FalconGym 2.0, a photorealistic simulation framework built on Gaussian Splatting (GSplat) with an Edit API that programmatically generates diverse static and dynamic tracks in milliseconds. Leveraging FalconGym 2.0's editability, we propose a Performance-Guided Refinement (PGR) algorithm, which concentrates visual policy's training on challenging tracks while iteratively improving its performance. Across two case studies (fixed-wing UAVs and quadrotors) with distinct dynamics and environments, we show that a single visual policy trained with PGR in FalconGym 2.0 outperforms state-of-the-art baselines in generalization and robustness: it generalizes to three unseen tracks with 100% success without per-track retraining and maintains higher success rates under gate-pose perturbations. Finally, we demonstrate that the visual policy trained with PGR in FalconGym 2.0 can be zero-shot sim-to-real transferred to a quadrotor hardware, achieving a 98.6% success rate (69 / 70 gates) over 30 trials spanning two three-gate tracks and a moving-gate track.
Abstract
Recent advances in 4D Gaussian Splatting (4DGS) editing still face challenges with view, temporal, and non-editing region consistency, as well as with handling complex text instructions. To address these issues, we propose 4DGS-Craft, a consistent and interactive 4DGS editing framework. We first introduce a 4D-aware InstructPix2Pix model to ensure both view and temporal consistency. This model incorporates 4D VGGT geometry features extracted from the initial scene, enabling it to capture underlying 4D geometric structures during editing. We further enhance this model with a multi-view grid module that enforces consistency by iteratively refining multi-view input images while jointly optimizing the underlying 4D scene. Furthermore, we preserve the consistency of non-edited regions through a novel Gaussian selection mechanism, which identifies and optimizes only the Gaussians within the edited regions. Beyond consistency, facilitating user interaction is also crucial for effective 4DGS editing. Therefore, we design an LLM-based module for user intent understanding. This module employs a user instruction template to define atomic editing operations and leverages an LLM for reasoning. As a result, our framework can interpret user intent and decompose complex instructions into a logical sequence of atomic operations, enabling it to handle intricate user commands and further enhance editing performance. Compared to related works, our approach enables more consistent and controllable 4D scene editing. Our code will be made available upon acceptance.
Abstract
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
Abstract
3D Gaussian Splatting (3DGS) has established itself as an efficient representation for real-time, high-fidelity 3D scene reconstruction. However, scaling 3DGS to large and unbounded scenes such as city blocks remains difficult. Existing divide-and-conquer methods alleviate memory pressure by partitioning the scene into blocks, but introduce new bottlenecks: (i) partitions suffer from severe load imbalance since uniform or heuristic splits do not reflect actual computational demands, and (ii) coarse-to-fine pipelines fail to exploit the coarse stage efficiently, often reloading the entire model and incurring high overhead. In this work, we introduce LoBE-GS, a novel Load-Balanced and Efficient 3D Gaussian Splatting framework, that re-engineers the large-scale 3DGS pipeline. LoBE-GS introduces a depth-aware partitioning method that reduces preprocessing from hours to minutes, an optimization-based strategy that balances visible Gaussians -- a strong proxy for computational load -- across blocks, and two lightweight techniques, visibility cropping and selective densification, to further reduce training cost. Evaluations on large-scale urban and outdoor datasets show that LoBE-GS consistently achieves up to $2\times$ faster end-to-end training time than state-of-the-art baselines, while maintaining reconstruction quality and enabling scalability to scenes infeasible with vanilla 3DGS.
Abstract
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations.However, these methods rely heavily on dense observations for robustly optimizing model parameters.To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process.To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images.Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies.Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/
Abstract
Dynamic view synthesis has seen significant advances, yet reconstructing scenes from uncalibrated, casual video remains challenging due to slow optimization and complex parameter estimation. In this work, we present Instant4D, a monocular reconstruction system that leverages native 4D representation to efficiently process casual video sequences within minutes, without calibrated cameras or depth sensors. Our method begins with geometric recovery through deep visual SLAM, followed by grid pruning to optimize scene representation. Our design significantly reduces redundancy while maintaining geometric integrity, cutting model size to under 10% of its original footprint. To handle temporal dynamics efficiently, we introduce a streamlined 4D Gaussian representation, achieving a 30x speed-up and reducing training time to within two minutes, while maintaining competitive performance across several benchmarks. Our method reconstruct a single video within 10 minutes on the Dycheck dataset or for a typical 200-frame video. We further apply our model to in-the-wild videos, showcasing its generalizability. Our project website is published at https://instant4d.github.io/.
Abstract
As the application of neural radiance fields (NeRFs) in various 3D vision tasks continues to expand, numerous NeRF-based style transfer techniques have been developed. However, existing methods typically integrate style statistics into the original NeRF pipeline, often leading to suboptimal results in both content preservation and artistic stylization. In this paper, we present multi-level dynamic style transfer for NeRFs (MDS-NeRF), a novel approach that reengineers the NeRF pipeline specifically for stylization and incorporates an innovative dynamic style injection module. Particularly, we propose a multi-level feature adaptor that helps generate a multi-level feature grid representation from the content radiance field, effectively capturing the multi-scale spatial structure of the scene. In addition, we present a dynamic style injection module that learns to extract relevant style features and adaptively integrates them into the content patterns. The stylized multi-level features are then transformed into the final stylized view through our proposed multi-level cascade decoder. Furthermore, we extend our 3D style transfer method to support omni-view style transfer using 3D style references. Extensive experiments demonstrate that MDS-NeRF achieves outstanding performance for 3D style transfer, preserving multi-scale spatial structures while effectively transferring stylistic characteristics.
Abstract
3D scene representation methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have significantly advanced novel view synthesis. As these methods become prevalent, addressing their vulnerabilities becomes critical. We analyze 3DGS robustness against image-level poisoning attacks and propose a novel density-guided poisoning method. Our method strategically injects Gaussian points into low-density regions identified via Kernel Density Estimation (KDE), embedding viewpoint-dependent illusory objects clearly visible from poisoned views while minimally affecting innocent views. Additionally, we introduce an adaptive noise strategy to disrupt multi-view consistency, further enhancing attack effectiveness. We propose a KDE-based evaluation protocol to assess attack difficulty systematically, enabling objective benchmarking for future research. Extensive experiments demonstrate our method's superior performance compared to state-of-the-art techniques. Project page: https://hentci.github.io/stealthattack/
Abstract
In this paper, we present the first pinhole-fisheye framework for heterogeneous multi-view depth estimation, PFDepth. Our key insight is to exploit the complementary characteristics of pinhole and fisheye imagery (undistorted vs. distorted, small vs. large FOV, far vs. near field) for joint optimization. PFDepth employs a unified architecture capable of processing arbitrary combinations of pinhole and fisheye cameras with varied intrinsics and extrinsics. Within PFDepth, we first explicitly lift 2D features from each heterogeneous view into a canonical 3D volumetric space. Then, a core module termed Heterogeneous Spatial Fusion is designed to process and fuse distortion-aware volumetric features across overlapping and non-overlapping regions. Additionally, we subtly reformulate the conventional voxel fusion into a novel 3D Gaussian representation, in which learnable latent Gaussian spheres dynamically adapt to local image textures for finer 3D aggregation. Finally, fused volume features are rendered into multi-view depth maps. Through extensive experiments, we demonstrate that PFDepth sets a state-of-the-art performance on KITTI-360 and RealHet datasets over current mainstream depth networks. To the best of our knowledge, this is the first systematic study of heterogeneous pinhole-fisheye depth estimation, offering both technical novelty and valuable empirical insights.
Abstract
3D Gaussian splatting (3DGS) is a transformative technique with profound implications on novel view synthesis and real-time rendering. Given its importance, there have been many attempts to improve its performance. However, with the increasing complexity of GPU architectures and the vast search space of performance-tuning parameters, it is a challenging task. Although manual optimizations have achieved remarkable speedups, they require domain expertise and the optimization process can be highly time consuming and error prone. In this paper, we propose to exploit large language models (LLMs) to analyze and optimize Gaussian splatting kernels. To our knowledge, this is the first work to use LLMs to optimize highly specialized real-world GPU kernels. We reveal the intricacies of using LLMs for code optimization and analyze the code optimization techniques from the LLMs. We also propose ways to collaborate with LLMs to further leverage their capabilities. For the original 3DGS code on the MipNeRF360 datasets, LLMs achieve significant speedups, 19% with Deepseek and 24% with GPT-5, demonstrating the different capabilities of different LLMs. By feeding additional information from performance profilers, the performance improvement from LLM-optimized code is enhanced to up to 42% and 38% on average. In comparison, our best-effort manually optimized version can achieve a performance improvement up to 48% and 39% on average, showing that there are still optimizations beyond the capabilities of current LLMs. On the other hand, even upon a newly proposed 3DGS framework with algorithmic optimizations, Seele, LLMs can still further enhance its performance by 6%, showing that there are optimization opportunities missed by domain experts. This highlights the potential of collaboration between domain experts and LLMs.