Search...

Search...

Recent Radiance Field Papers

Curated access to the most recent Radiance Field papers. There may be a lag between publishing and when it appears here.

Easy access to the most recent Radiance Field papers. There may be a lag between when a paper is published and when it appears here.

Easy access to the most recent Radiance Field papers. There may be a lag between when a paper is published and when it appears here.

Search...

Abstract

Creating high-fidelity, animatable 3D talking heads is crucial for immersive applications, yet often hindered by the prevalence of low-quality image or video sources, which yield poor 3D reconstructions. In this paper, we introduce SuperHead, a novel framework for enhancing low-resolution, animatable 3D head avatars. The core challenge lies in synthesizing high-quality geometry and textures, while ensuring both 3D and temporal consistency during animation and preserving subject identity. Despite recent progress in image, video and 3D-based super-resolution (SR), existing SR techniques are ill-equipped to handle dynamic 3D inputs. To address this, SuperHead leverages the rich priors from pre-trained 3D generative models via a novel dynamics-aware 3D inversion scheme. This process optimizes the latent representation of the generative model to produce a super-resolved 3D Gaussian Splatting (3DGS) head model, which is subsequently rigged to an underlying parametric head model (e.g., FLAME) for animation. The inversion is jointly supervised using a sparse collection of upscaled 2D face renderings and corresponding depth maps, captured from diverse facial expressions and camera viewpoints, to ensure realism under dynamic facial motions. Experiments demonstrate that SuperHead generates avatars with fine-grained facial details under dynamic motions, significantly outperforming baseline methods in visual quality.

Abstract

3D Gaussian Splatting (3DGS) has recently emerged as a promising approach for 3D reconstruction, providing explicit, point-based representations and enabling high-quality real time rendering. However, when trained with sparse input views, 3DGS suffers from overfitting and structural degradation, leading to poor generalization on novel views. This limitation arises from its optimization relying solely on photometric loss without incorporating any 3D structure priors. To address this issue, we propose Coherent supergaussian Modeling with Spatial Priors (COSMOS). Inspired by the concept of superpoints from 3D segmentation, COSMOS introduces 3D structure priors by newly defining supergaussian groupings of Gaussians based on local geometric cues and appearance features. To this end, COSMOS applies inter group global self-attention across supergaussian groups and sparse local attention among individual Gaussians, enabling the integration of global and local spatial information. These structure-aware features are then used for predicting Gaussian attributes, facilitating more consistent 3D reconstructions. Furthermore, by leveraging supergaussian-based grouping, COSMOS enforces an intra-group positional regularization to maintain structural coherence and suppress floaters, thereby enhancing training stability under sparse-view conditions. Our experiments on Blender and DTU show that COSMOS surpasses state-of-the-art methods in sparse-view settings without any external depth supervision.

Abstract

We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers fundamental density-stratification. Dense regions exhibit geometry-correlated parameters amenable to render-free prediction, while sparse regions show systematic failure across architectures. We formalize this through variance decomposition, demonstrating that visibility heterogeneity creates covariance-dominated coupling between geometric and appearance parameters in sparse regions. This reveals the dual character of RORs: geometric primitives where point clouds suffice, and view synthesis primitives where multi-view constraints are essential. We provide density-aware strategies that improve training robustness and discuss architectural implications for systems that adaptively balance feed-forward prediction and rendering-based refinement.

Abstract

Robust and accurate perception of dynamic objects and map elements is crucial for autonomous vehicles performing safe navigation in complex traffic scenarios. While vision-only methods have become the de facto standard due to their technical advances, they can benefit from effective and cost-efficient fusion with radar measurements. In this work, we advance fusion methods by repurposing Gaussian Splatting as an efficient universal view transformer that bridges the view disparity gap, mapping both image pixels and radar points into a common Bird's-Eye View (BEV) representation. Our main contribution is GaussianCaR, an end-to-end network for BEV segmentation that, unlike prior BEV fusion methods, leverages Gaussian Splatting to map raw sensor information into latent features for efficient camera-radar fusion. Our architecture combines multi-scale fusion with a transformer decoder to efficiently extract BEV features. Experimental results demonstrate that our approach achieves performance on par with, or even surpassing, the state of the art on BEV segmentation tasks (57.3%, 82.9%, and 50.1% IoU for vehicles, roads, and lane dividers) on the nuScenes dataset, while maintaining a 3.2x faster inference runtime. Code and project page are available online.

Abstract

Inverse rendering aims to decompose a scene into its geometry, material properties and light conditions under a certain rendering model. It has wide applications like view synthesis, relighting, and scene editing. In recent years, inverse rendering methods have been inspired by view synthesis approaches like neural radiance fields and Gaussian splatting, which are capable of efficiently decomposing a scene into its geometry and radiance. They then further estimate the material and lighting that lead to the observed scene radiance. However, the latter step is highly ambiguous and prior works suffer from inaccurate color and baked shadows in their albedo estimation albeit their regularization. To this end, we propose RotLight, a simple capturing setup, to address the ambiguity. Compared to a usual capture, RotLight only requires the object to be rotated several times during the process. We show that as few as two rotations is effective in reducing artifacts. To further improve 2DGS-based inverse rendering, we additionally introduce a proxy mesh that not only allows accurate incident light tracing, but also enables a residual constraint and improves global illumination handling. We demonstrate with both synthetic and real world datasets that our method achieves superior albedo estimation while keeping efficient computation.

Abstract

In cluttered scenes with inevitable occlusions and incomplete observations, selecting informative viewpoints is essential for building a reliable representation. In this context, 3D Gaussian Splatting (3DGS) offers a distinct advantage, as it can explicitly guide the selection of subsequent viewpoints and then refine the representation with new observations. However, existing approaches rely solely on geometric cues, neglect manipulation-relevant semantics, and tend to prioritize exploitation over exploration. To tackle these limitations, we introduce an instance-aware Next Best View (NBV) policy that prioritizes underexplored regions by leveraging object features. Specifically, our object-aware 3DGS distills instancelevel information into one-hot object vectors, which are used to compute confidence-weighted information gain that guides the identification of regions associated with erroneous and uncertain Gaussians. Furthermore, our method can be easily adapted to an object-centric NBV, which focuses view selection on a target object, thereby improving reconstruction robustness to object placement. Experiments demonstrate that our NBV policy reduces depth error by up to 77.14% on the synthetic dataset and 34.10% on the real-world GraspNet dataset compared to baselines. Moreover, compared to targeting the entire scene, performing NBV on a specific object yields an additional reduction of 25.60% in depth error for that object. We further validate the effectiveness of our approach through real-world robotic manipulation tasks.

Abstract

The rapid advancement of deepfake technology has significantly elevated the realism and accessibility of synthetic media. Emerging techniques, such as diffusion-based models and Neural Radiance Fields (NeRF), alongside enhancements in traditional Generative Adversarial Networks (GANs), have contributed to the sophisticated generation of deepfake videos. Concurrently, deepfake detection methods have seen notable progress, driven by innovations in Transformer architectures, contrastive learning, and other machine learning approaches. In this study, we conduct a comprehensive empirical analysis of state-of-the-art deepfake detection techniques, including human evaluation experiments against cutting-edge synthesis methods. Our findings highlight a concerning trend: many state-of-the-art detection models exhibit markedly poor performance when challenged with deepfakes produced by modern synthesis techniques, including poor performance by human participants against the best quality deepfakes. Through extensive experimentation, we provide evidence that underscores the urgent need for continued refinement of detection models to keep pace with the evolving capabilities of deepfake generation technologies. This research emphasizes the critical gap between current detection methodologies and the sophistication of new generation techniques, calling for intensified efforts in this crucial area of study.

Abstract

Thermal infrared sensors, with wavelengths longer than smoke particles, can capture imagery independent of darkness, dust, and smoke. This robustness has made them increasingly valuable for motion estimation and environmental perception in robotics, particularly in adverse conditions. Existing thermal odometry and mapping approaches, however, are predominantly geometric and often fail across diverse datasets while lacking the ability to produce dense maps. Motivated by the efficiency and high-quality reconstruction ability of recent Gaussian Splatting (GS) techniques, we propose TOM-GS, a thermal odometry and mapping method that integrates learning-based odometry with GS-based dense mapping. TOM-GS is among the first GS-based SLAM systems tailored for thermal cameras, featuring dedicated thermal image enhancement and monocular depth integration. Extensive experiments on motion estimation and novel-view rendering demonstrate that TOM-GS outperforms existing learning-based methods, confirming the benefits of learning-based pipelines for robust thermal odometry and dense reconstruction.

Abstract

UAV navigation in unstructured outdoor environments using passive monocular vision is hindered by the substantial visual domain gap between simulation and reality. While 3D Gaussian Splatting enables photorealistic scene reconstruction from real-world data, existing methods inherently couple static lighting with geometry, severely limiting policy generalization to dynamic real-world illumination. In this paper, we propose a novel end-to-end reinforcement learning framework designed for effective zero-shot transfer to unstructured outdoors. Within a high-fidelity simulation grounded in real-world data, our policy is trained to map raw monocular RGB observations directly to continuous control commands. To overcome photometric limitations, we introduce Relightable 3D Gaussian Splatting, which decomposes scene components to enable explicit, physically grounded editing of environmental lighting within the neural representation. By augmenting training with diverse synthesized lighting conditions ranging from strong directional sunlight to diffuse overcast skies, we compel the policy to learn robust, illumination-invariant visual features. Extensive real-world experiments demonstrate that a lightweight quadrotor achieves robust, collision-free navigation in complex forest environments at speeds up to 10 m/s, exhibiting significant resilience to drastic lighting variations without fine-tuning.

Abstract

In this paper, we propose a RGB-D SLAM system that reconstructs a language-aligned dense feature field while sustaining low-latency tracking and mapping. First, we introduce a Top-K Rendering pipeline, a high-throughput and semantic-distortion-free method for efficiently rendering high-dimensional feature maps. To address the resulting semantic-geometric discrepancy and mitigate the memory consumption, we further design a multi-criteria map management strategy that prunes redundant or inconsistent Gaussians while preserving scene integrity. Finally, a hybrid field optimization framework jointly refines the geometric and semantic fields under real-time constraints by decoupling their optimization frequencies according to field characteristics. The proposed system achieves superior geometric fidelity compared to geometric-only baselines and comparable semantic fidelity to offline approaches while operating at 15 FPS. Our results demonstrate that online SLAM with dense, uncompressed language-aligned feature fields is both feasible and effective, bridging the gap between 3D perception and language-based reasoning.