Recent Radiance Field Papers
Search...
Abstract
We introduce InsideOut, an extension of 3D Gaussian splatting (3DGS) that bridges the gap between high-fidelity RGB surface details and subsurface X-ray structures. The fusion of RGB and X-ray imaging is invaluable in fields such as medical diagnostics, cultural heritage restoration, and manufacturing. We collect new paired RGB and X-ray data, perform hierarchical fitting to align RGB and X-ray radiative Gaussian splats, and propose an X-ray reference loss to ensure consistent internal structures. InsideOut effectively addresses the challenges posed by disparate data representations between the two modalities and limited paired datasets. This approach significantly extends the applicability of 3DGS, enhancing visualization, simulation, and non-destructive testing capabilities across various domains.
Abstract
Feed-forward surround-view autonomous driving scene reconstruction offers fast, generalizable inference ability, which faces the core challenge of ensuring generalization while elevating novel view quality. Due to the surround-view with minimal overlap regions, existing methods typically fail to ensure geometric consistency and reconstruction quality for novel views. To tackle this tension, we claim that geometric information must be learned explicitly, and the resulting features should be leveraged to guide the elevating of semantic quality in novel views. In this paper, we introduce \textbf{Visual Gaussian Driving (VGD)}, a novel feed-forward end-to-end learning framework designed to address this challenge. To achieve generalizable geometric estimation, we design a lightweight variant of the VGGT architecture to efficiently distill its geometric priors from the pre-trained VGGT to the geometry branch. Furthermore, we design a Gaussian Head that fuses multi-scale geometry tokens to predict Gaussian parameters for novel view rendering, which shares the same patch backbone as the geometry branch. Finally, we integrate multi-scale features from both geometry and Gaussian head branches to jointly supervise a semantic refinement model, optimizing rendering quality through feature-consistent learning. Experiments on nuScenes demonstrate that our approach significantly outperforms state-of-the-art methods in both objective metrics and subjective quality under various settings, which validates VGD's scalability and high-fidelity surround-view reconstruction.
Abstract
As Neural Radiance Fields (NeRFs) have emerged as a powerful tool for 3D scene representation and novel view synthesis, protecting their intellectual property (IP) from unauthorized use is becoming increasingly crucial. In this work, we aim to protect the IP of NeRFs by injecting adversarial perturbations that disrupt their unauthorized applications. However, perturbing the 3D geometry of NeRFs can easily deform the underlying scene structure and thus substantially degrade the rendering quality, which has led existing attempts to avoid geometric perturbations or restrict them to explicit spaces like meshes. To overcome this limitation, we introduce a learnable sensitivity to quantify the spatially varying impact of geometric perturbations on rendering quality. Building upon this, we propose AegisRF, a novel framework that consists of a Perturbation Field, which injects adversarial perturbations into the pre-rendering outputs (color and volume density) of NeRF models to fool an unauthorized downstream target model, and a Sensitivity Field, which learns the sensitivity to adaptively constrain geometric perturbations, preserving rendering quality while disrupting unauthorized use. Our experimental evaluations demonstrate the generalized applicability of AegisRF across diverse downstream tasks and modalities, including multi-view image classification and voxel-based 3D localization, while maintaining high visual fidelity. Codes are available at https://github.com/wkim97/AegisRF.
Abstract
Recent advances in dynamic scene reconstruction have significantly benefited from 3D Gaussian Splatting, yet existing methods show inconsistent performance across diverse scenes, indicating no single approach effectively handles all dynamic challenges. To overcome these limitations, we propose Mixture of Experts for Dynamic Gaussian Splatting (MoE-GS), a unified framework integrating multiple specialized experts via a novel Volume-aware Pixel Router. Our router adaptively blends expert outputs by projecting volumetric Gaussian-level weights into pixel space through differentiable weight splatting, ensuring spatially and temporally coherent results. Although MoE-GS improves rendering quality, the increased model capacity and reduced FPS are inherent to the MoE architecture. To mitigate this, we explore two complementary directions: (1) single-pass multi-expert rendering and gate-aware Gaussian pruning, which improve efficiency within the MoE framework, and (2) a distillation strategy that transfers MoE performance to individual experts, enabling lightweight deployment without architectural changes. To the best of our knowledge, MoE-GS is the first approach incorporating Mixture-of-Experts techniques into dynamic Gaussian splatting. Extensive experiments on the N3V and Technicolor datasets demonstrate that MoE-GS consistently outperforms state-of-the-art methods with improved efficiency. Video demonstrations are available at https://anonymous.4open.science/w/MoE-GS-68BA/.
Abstract
3D Gaussian Splatting (3DGS) has emerged as a pivotal technique for real-time view synthesis in colonoscopy, enabling critical applications such as virtual colonoscopy and lesion tracking. However, the vanilla 3DGS assumes static illumination and that observed appearance depends solely on viewing angle, which causes incompatibility with the photometric variations in colonoscopic scenes induced by dynamic light source/camera. This mismatch forces most 3DGS methods to introduce structure-violating vaporous Gaussian blobs between the camera and tissues to compensate for illumination attenuation, ultimately degrading the quality of 3D reconstructions. Previous works only consider the illumination attenuation caused by light distance, ignoring the physical characters of light source and camera. In this paper, we propose ColIAGS, an improved 3DGS framework tailored for colonoscopy. To mimic realistic appearance under varying illumination, we introduce an Improved Appearance Modeling with two types of illumination attenuation factors, which enables Gaussians to adapt to photometric variations while preserving geometry accuracy. To ensure the geometry approximation condition of appearance modeling, we propose an Improved Geometry Modeling using high-dimensional view embedding to enhance Gaussian geometry attribute prediction. Furthermore, another cosine embedding input is leveraged to generate illumination attenuation solutions in an implicit manner. Comprehensive experimental results on standard benchmarks demonstrate that our proposed ColIAGS achieves the dual capabilities of novel view synthesis and accurate geometric reconstruction. It notably outperforms other state-of-the-art methods by achieving superior rendering fidelity while significantly reducing Depth MSE. Code will be available.
Abstract
3D Gaussian Splatting (3D-GS) achieves real-time photorealistic novel view synthesis, yet struggles with complex scenes due to over-reconstruction artifacts, manifesting as local blurring and needle-shape distortions. While recent approaches attribute these issues to insufficient splitting of large-scale Gaussians, we identify two fundamental limitations: gradient magnitude dilution during densification and the primitive frozen phenomenon, where essential Gaussian densification is inhibited in complex regions while suboptimally scaled Gaussians become trapped in local optima. To address these challenges, we introduce ReAct-GS, a method founded on the principle of re-activation. Our approach features: (1) an importance-aware densification criterion incorporating $\alpha$-blending weights from multiple viewpoints to re-activate stalled primitive growth in complex regions, and (2) a re-activation mechanism that revitalizes frozen primitives through adaptive parameter perturbations. Comprehensive experiments across diverse real-world datasets demonstrate that ReAct-GS effectively eliminates over-reconstruction artifacts and achieves state-of-the-art performance on standard novel view synthesis metrics while preserving intricate geometric details. Additionally, our re-activation mechanism yields consistent improvements when integrated with other 3D-GS variants such as Pixel-GS, demonstrating its broad applicability.
Abstract
We introduce Mono4DGS-HDR, the first system for reconstructing renderable 4D high dynamic range (HDR) scenes from unposed monocular low dynamic range (LDR) videos captured with alternating exposures. To tackle such a challenging problem, we present a unified framework with two-stage optimization approach based on Gaussian Splatting. The first stage learns a video HDR Gaussian representation in orthographic camera coordinate space, eliminating the need for camera poses and enabling robust initial HDR video reconstruction. The second stage transforms video Gaussians into world space and jointly refines the world Gaussians with camera poses. Furthermore, we propose a temporal luminance regularization strategy to enhance the temporal consistency of the HDR appearance. Since our task has not been studied before, we construct a new evaluation benchmark using publicly available datasets for HDR video reconstruction. Extensive experiments demonstrate that Mono4DGS-HDR significantly outperforms alternative solutions adapted from state-of-the-art methods in both rendering quality and speed.
Abstract
The problem of 3D reconstruction from posed images is undergoing a fundamental transformation, driven by continuous advances in 3D Gaussian Splatting (3DGS). By modeling scenes explicitly as collections of 3D Gaussians, 3DGS enables efficient rasterization through volumetric splatting, offering thus a seamless integration with common graphics pipelines. Despite its real-time rendering capabilities for novel view synthesis, 3DGS suffers from a high memory footprint, the tendency to bake lighting effects directly into its representation, and limited support for secondary-ray effects. This tutorial provides a concise yet comprehensive overview of the 3DGS pipeline, starting from its splatting formulation and then exploring the main efforts in addressing its limitations. Finally, we survey a range of applications that leverage 3DGS for surface reconstruction, avatar modeling, animation, and content generation-highlighting its efficient rendering and suitability for feed-forward pipelines.
Abstract
3D Gaussian Splatting (3DGS) under raindrop conditions suffers from severe occlusions and optical distortions caused by raindrop contamination on the camera lens, substantially degrading reconstruction quality. Existing benchmarks typically evaluate 3DGS using synthetic raindrop images with known camera poses (constrained images), assuming ideal conditions. However, in real-world scenarios, raindrops often interfere with accurate camera pose estimation and point cloud initialization. Moreover, a significant domain gap between synthetic and real raindrops further impairs generalization. To tackle these issues, we introduce RaindropGS, a comprehensive benchmark designed to evaluate the full 3DGS pipeline-from unconstrained, raindrop-corrupted images to clear 3DGS reconstructions. Specifically, the whole benchmark pipeline consists of three parts: data preparation, data processing, and raindrop-aware 3DGS evaluation, including types of raindrop interference, camera pose estimation and point cloud initialization, single image rain removal comparison, and 3D Gaussian training comparison. First, we collect a real-world raindrop reconstruction dataset, in which each scene contains three aligned image sets: raindrop-focused, background-focused, and rain-free ground truth, enabling a comprehensive evaluation of reconstruction quality under different focus conditions. Through comprehensive experiments and analyses, we reveal critical insights into the performance limitations of existing 3DGS methods on unconstrained raindrop images and the varying impact of different pipeline components: the impact of camera focus position on 3DGS reconstruction performance, and the interference caused by inaccurate pose and point cloud initialization on reconstruction. These insights establish clear directions for developing more robust 3DGS methods under raindrop conditions.
Abstract
Recent advancements in 3D Gaussian Splatting (3DGS) have greatly influenced neural fields, as it enables high-fidelity rendering with impressive visual quality. However, 3DGS has difficulty accurately representing surfaces. In contrast, 2DGS transforms the 3D volume into a collection of 2D planar Gaussian disks. Despite advancements in geometric fidelity, rendering quality remains compromised, highlighting the challenge of achieving both high-quality rendering and precise geometric structures. This indicates that optimizing both geometric and rendering quality in a single training stage is currently unfeasible. To overcome this limitation, we present 2DGS-R, a new method that uses a hierarchical training approach to improve rendering quality while maintaining geometric accuracy. 2DGS-R first trains the original 2D Gaussians with the normal consistency regularization. Then 2DGS-R selects the 2D Gaussians with inadequate rendering quality and applies a novel in-place cloning operation to enhance the 2D Gaussians. Finally, we fine-tune the 2DGS-R model with opacity frozen. Experimental results show that compared to the original 2DGS, our method requires only 1\% more storage and minimal additional training time. Despite this negligible overhead, it achieves high-quality rendering results while preserving fine geometric structures. These findings indicate that our approach effectively balances efficiency with performance, leading to improvements in both visual fidelity and geometric reconstruction accuracy.