Recent Radiance Field Papers
Abstract
Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: www.convexsplatting.com.
Abstract
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction from multi-view visual inputs. While existing approaches mainly rely on processing full-length multi-view videos for 4D reconstruction, there has been limited exploration of iterative online reconstruction methods that enable on-the-fly training and per-frame streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features and also neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage for distinguishing dynamic and static primitives and optimizing their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
Abstract
Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results.
Abstract
Experience Goal Visual Rearrangement task stands as a foundational challenge within Embodied AI, requiring an agent to construct a robust world model that accurately captures the goal state. The agent uses this world model to restore a shuffled scene to its original configuration, making an accurate representation of the world essential for successfully completing the task. In this work, we present a novel framework that leverages on 3D Gaussian Splatting as a 3D scene representation for experience goal visual rearrangement task. Recent advances in volumetric scene representation like 3D Gaussian Splatting, offer fast rendering of high quality and photo-realistic novel views. Our approach enables the agent to have consistent views of the current and the goal setting of the rearrangement task, which enables the agent to directly compare the goal state and the shuffled state of the world in image space. To compare these views, we propose to use a dense feature matching method with visual features extracted from a foundation model, leveraging its advantages of a more universal feature representation, which facilitates robustness, and generalization. We validate our approach on the AI2-THOR rearrangement challenge benchmark and demonstrate improvements over the current state of the art methods
Abstract
While 3D Gaussian Splatting (3DGS) has recently demonstrated remarkable rendering quality and efficiency in 3D scene reconstruction, it struggles with varying lighting conditions and incidental occlusions in real-world scenarios. To accommodate varying lighting conditions, existing 3DGS extensions apply color mapping to the massive Gaussian primitives with individually optimized appearance embeddings. To handle occlusions, they predict pixel-wise uncertainties via 2D image features for occlusion capture. Nevertheless, such massive color mapping and pixel-wise uncertainty prediction strategies suffer from not only additional computational costs but also coarse-grained lighting and occlusion handling. In this work, we propose a nexus kernel-driven approach, termed NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. In particular, NexusSplats leverages a novel light decoupling strategy where appearance embeddings are optimized based on nexus kernels instead of massive Gaussian primitives, thus accelerating reconstruction speeds while ensuring local color consistency for finer textures. Additionally, a Gaussian-wise uncertainty mechanism is developed, aligning 3D structures with 2D image features for fine-grained occlusion handling. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality while reducing reconstruction time by up to 70.4% compared to the current best in quality.
Abstract
We present FAST-Splat for fast, ambiguity-free semantic Gaussian Splatting, which seeks to address the main limitations of existing semantic Gaussian Splatting methods, namely: slow training and rendering speeds; high memory usage; and ambiguous semantic object localization. In deriving FAST-Splat , we formulate open-vocabulary semantic Gaussian Splatting as the problem of extending closed-set semantic distillation to the open-set (open-vocabulary) setting, enabling FAST-Splat to provide precise semantic object localization results, even when prompted with ambiguous user-provided natural-language queries. Further, by exploiting the explicit form of the Gaussian Splatting scene representation to the fullest extent, FAST-Splat retains the remarkable training and rendering speeds of Gaussian Splatting. Specifically, while existing semantic Gaussian Splatting methods distill semantics into a separate neural field or utilize neural models for dimensionality reduction, FAST-Splat directly augments each Gaussian with specific semantic codes, preserving the training, rendering, and memory-usage advantages of Gaussian Splatting over neural field methods. These Gaussian-specific semantic codes, together with a hash-table, enable semantic similarity to be measured with open-vocabulary user prompts and further enable FAST-Splat to respond with unambiguous semantic object labels and 3D masks, unlike prior methods. In experiments, we demonstrate that FAST-Splat is 4x to 6x faster to train with a 13x faster data pre-processing step, achieves between 18x to 75x faster rendering speeds, and requires about 3x smaller GPU memory, compared to the best-competing semantic Gaussian Splatting methods. Further, FAST-Splat achieves relatively similar or better semantic segmentation performance compared to existing methods. After the review period, we will provide links to the project website and the codebase.
Abstract
Gaze estimation encounters generalization challenges when dealing with out-of-distribution data. To address this problem, recent methods use neural radiance fields (NeRF) to generate augmented data. However, existing methods based on NeRF are computationally expensive and lack facial details. 3D Gaussian Splatting (3DGS) has become the prevailing representation of neural fields. While 3DGS has been extensively examined in head avatars, it faces challenges with accurate gaze control and generalization across different subjects. In this work, we propose GazeGaussian, a high-fidelity gaze redirection method that uses a two-stream 3DGS model to represent the face and eye regions separately. By leveraging the unstructured nature of 3DGS, we develop a novel eye representation for rigid eye rotation based on the target gaze direction. To enhance synthesis generalization across various subjects, we integrate an expression-conditional module to guide the neural renderer. Comprehensive experiments show that GazeGaussian outperforms existing methods in rendering speed, gaze redirection accuracy, and facial synthesis across multiple datasets. We also demonstrate that existing gaze estimation methods can leverage GazeGaussian to improve their generalization performance. The code will be available at: https://ucwxb.github.io/GazeGaussian/.
Abstract
Endoscopic procedures are crucial for colorectal cancer diagnosis, and three-dimensional reconstruction of the environment for real-time novel-view synthesis can significantly enhance diagnosis. We present PR-ENDO, a framework that leverages 3D Gaussian Splatting within a physically based, relightable model tailored for the complex acquisition conditions in endoscopy, such as restricted camera rotations and strong view-dependent illumination. By exploiting the connection between the camera and light source, our approach introduces a relighting model to capture the intricate interactions between light and tissue using physically based rendering and MLP. Existing methods often produce artifacts and inconsistencies under these conditions, which PR-ENDO overcomes by incorporating a specialized diffuse MLP that utilizes light angles and normal vectors, achieving stable reconstructions even with limited training camera rotations. We benchmarked our framework using a publicly available dataset and a newly introduced dataset with wider camera rotations. Our methods demonstrated superior image quality compared to baseline approaches.
Abstract
Snapshot Compressive Imaging (SCI) offers a possibility for capturing information in high-speed dynamic scenes, requiring efficient reconstruction method to recover scene information. Despite promising results, current deep learning-based and NeRF-based reconstruction methods face challenges: 1) deep learning-based reconstruction methods struggle to maintain 3D structural consistency within scenes, and 2) NeRF-based reconstruction methods still face limitations in handling dynamic scenes. To address these challenges, we propose SCIGS, a variant of 3DGS, and develop a primitive-level transformation network that utilizes camera pose stamps and Gaussian primitive coordinates as embedding vectors. This approach resolves the necessity of camera pose in vanilla 3DGS and enhances multi-view 3D structural consistency in dynamic scenes by utilizing transformed primitives. Additionally, a high-frequency filter is introduced to eliminate the artifacts generated during the transformation. The proposed SCIGS is the first to reconstruct a 3D explicit scene from a single compressed image, extending its application to dynamic 3D scenes. Experiments on both static and dynamic scenes demonstrate that SCIGS not only enhances SCI decoding but also outperforms current state-of-the-art methods in reconstructing dynamic 3D scenes from a single compressed image. The code will be made available upon publication.
Abstract
Recent advancements in 3D generation models have opened new possibilities for simulating dynamic 3D object movements and customizing behaviors, yet creating this content remains challenging. Current methods often require manual assignment of precise physical properties for simulations or rely on video generation models to predict them, which is computationally intensive. In this paper, we rethink the usage of multi-modal large language model (MLLM) in physics-based simulation, and present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics. We begin with detailed scene reconstruction and object-level 3D open-vocabulary segmentation, progressing to multi-view image in-painting. Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception (MLLM-P3) to predict mean physical properties of objects in a zero-shot manner. Based on the mean values and the object's geometry, the Material Property Distribution Prediction model (MPDP) model then estimates the full distribution, reformulating the problem as probability distribution estimation to reduce computational costs. Finally, we simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling (PGAS) strategy, efficiently capturing complex deformations and significantly reducing computational costs. Extensive experiments and user studies demonstrate our Sim Anything achieves more realistic motion than state-of-the-art methods within 2 minutes on a single GPU.
Load More