Beizhen Zhao

Yifan Zhou

Sicheng Yu

Zijian Wang

Hao Wang

3D Gaussian Splatting (3DGS) has revolutionized 3D scene reconstruction, which effectively balances rendering quality, efficiency, and speed. However, existing 3DGS approaches usually generate plausible outputs and face significant challenges in complex scene reconstruction, manifesting as incomplete holistic structural outlines and unclear local lighting effects. To address these issues simultaneously, we propose a novel decoupled optimization framework, which integrates wavelet decomposition into 3D Gaussian Splatting and 2D sampling. Technically, through 3D wavelet decomposition, our approach divides point clouds into high-frequency and low-frequency components, enabling targeted optimization for each. The low-frequency component captures global structural outlines and manages the distribution of Gaussians through voxelization. In contrast, the high-frequency component restores intricate geometric and textural details while incorporating a relight module to mitigate lighting artifacts and enhance photorealistic rendering. Additionally, a 2D wavelet decomposition is applied to the training images, simulating radiance variations. This provides critical guidance for high-frequency detail reconstruction, ensuring seamless integration of details with the global structure. Extensive experiments on challenging datasets demonstrate our method achieves state-of-the-art performance across various metrics, surpassing existing approaches and advancing the field of 3D scene reconstruction.

PDF URL