Research

Lightplane: Greatly Reducing VRAM Requirements

Michael Rubloff

Michael Rubloff

May 2, 2024

Email
Copy Link
Twitter
Linkedin
Reddit
Whatsapp
Lightplane
Lightplane

When I first started creating with NeRFs, one of my biggest pain points was pushing a dataset through COLMAP, only to get a CUDA out of memory error. It bothered me so much that I actually created two calculators to help me never go over again.

In roughly May or June of 2022, the NVIDIA team released an update that allowed me to process three times as many images on my 3080. I was so excited!

Since then, we haven't seen many increases on the computation efficiency and memory impact of radiance fields. That's why I was thrilled to see Lightplane last night from the University of Michigan and Meta, in which they have greatly increased available memory capacity.

There are two main components that power Lightplane: the Lightplane Renderer and Splatter. You might think the former deals with NeRFs and the latter with Gaussian Splatting, but this squarely focuses on NeRFs because they employ volumetric rendering, whereas Gaussian Splatting utilizes rasterization.  

The Lightplane Renderer tackles the memory bottleneck by reconfiguring the computation of rendering operations across 3D neural fields. Instead of storing intermediate values for every point evaluated along a ray (a common necessity in traditional volumetric rendering like NeRF), it processes and updates data sequentially along the ray's path, thereby minimizing memory storage.

As the renderer processes each point along a ray, it calculates the necessary features (e.g., color, density) and immediately updates the image pixel and transmittance values. This means only the current processing point's data is held in memory at any time. By recalculating intermediate values only when needed for backpropagation and not storing them, the Lightplane Renderer drastically cuts down the memory requirements typically needed for gradient computation.

The method employs a strategic use of GPU cache to temporarily hold essential data during computation, further optimizing memory use without compromising processing speed.

Conversely, Splatter focuses on the process of lifting 2D image data into a 3D space, a critical step for reconstructing 3D models from 2D inputs. It optimizes this process by reversing the typical data flow seen in rendering, pushing 2D information directly into the 3D structure rather than pulling 3D data from 2D inputs.

Splatter projects features from 2D images directly into the 3D model’s data structure. Each pixel's features are mapped onto the 3D-structure cell of the corresponding point along a ray, thereby bypassing the need to store large volumes of intermediate 3D data.

By inverting the standard rendering logic, Splatter manages to reduce memory load significantly. This inverse approach also simplifies the computational complexity of mapping features to 3D points. The component uses a hashing scheme to efficiently aggregate and store 2D data into 3D structures, ensuring that memory usage is minimized even when processing large arrays of input images.

The efficiency numbers for training they're getting are crazy, reducing orders of magnitude and allowing people to potentially begin training radically larger datasets, with significantly less GPUs. To be blunt, this could mean that GPUs with even the smallest amount of VRAM can work. Paired with some of NVIDIA's most recent NeRF-XL, which can distribute training jointly across scenes, you can imagine what could be coming.

Excitingly the code has already been released with a BSD 3.0 License, allowing for permissible use and incorporation within projects. Check out more from their project page, here!

In addition, they have also created quite robust documentation to accompany the code. I'm very excited to begin to see it be implemented across existing platforms. Hopefully this means my calculators will need to be revisited!

Featured

Featured

Featured

Research

CAT3D Pounces on 3D Scene Generation

We very recently were looking at RealmDreamer, which generates scenes from prompts. Just over a month later, CAT3D, short for "Create Anything in 3D," has emerged and takes things up a notch or two.

Michael Rubloff

May 17, 2024

Research

CAT3D Pounces on 3D Scene Generation

We very recently were looking at RealmDreamer, which generates scenes from prompts. Just over a month later, CAT3D, short for "Create Anything in 3D," has emerged and takes things up a notch or two.

Michael Rubloff

May 17, 2024

Research

CAT3D Pounces on 3D Scene Generation

We very recently were looking at RealmDreamer, which generates scenes from prompts. Just over a month later, CAT3D, short for "Create Anything in 3D," has emerged and takes things up a notch or two.

Michael Rubloff

Radiancefields.com launches Job Board

The latest feature has arrived onto the site and it's with the goal of connecting top talent to companies from newly launched start ups to the world's largest companies.

Michael Rubloff

May 15, 2024

Radiancefields.com launches Job Board

The latest feature has arrived onto the site and it's with the goal of connecting top talent to companies from newly launched start ups to the world's largest companies.

Michael Rubloff

May 15, 2024

Radiancefields.com launches Job Board

The latest feature has arrived onto the site and it's with the goal of connecting top talent to companies from newly launched start ups to the world's largest companies.

Michael Rubloff

News

SIGGRAPH 2024 Program Announced

The upcoming SIGGRAPH conference catalog has been released and the conference will be filled of radiance fields!

Michael Rubloff

May 14, 2024

News

SIGGRAPH 2024 Program Announced

The upcoming SIGGRAPH conference catalog has been released and the conference will be filled of radiance fields!

Michael Rubloff

May 14, 2024

News

SIGGRAPH 2024 Program Announced

The upcoming SIGGRAPH conference catalog has been released and the conference will be filled of radiance fields!

Michael Rubloff

Research

Tri-MipRF to Rip-NeRF

Tri-MipRF was one of the more underrated NeRF papers to be released last year. Now we're seeing a progression of the work Tri-Mip created with Rip-NeRF.

Michael Rubloff

May 14, 2024

Research

Tri-MipRF to Rip-NeRF

Tri-MipRF was one of the more underrated NeRF papers to be released last year. Now we're seeing a progression of the work Tri-Mip created with Rip-NeRF.

Michael Rubloff

May 14, 2024

Research

Tri-MipRF to Rip-NeRF

Tri-MipRF was one of the more underrated NeRF papers to be released last year. Now we're seeing a progression of the work Tri-Mip created with Rip-NeRF.

Michael Rubloff

To embed a website or widget, add it to the properties panel.

Trending articles

Trending articles

Trending articles

Research

Gaustudio

Gaussian Splatting methods have continued to pour in over the first three months of the year. With the rate of adoption, being able to merge and compare these methods, shortly after their release would be amazing.

Michael Rubloff

Apr 8, 2024

Research

Gaustudio

Gaussian Splatting methods have continued to pour in over the first three months of the year. With the rate of adoption, being able to merge and compare these methods, shortly after their release would be amazing.

Michael Rubloff

Apr 8, 2024

Research

Gaustudio

Gaussian Splatting methods have continued to pour in over the first three months of the year. With the rate of adoption, being able to merge and compare these methods, shortly after their release would be amazing.

Michael Rubloff

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Research

The MERF that turned into a SMERF

For the long time readers of this site, earlier this year, we looked into Google Research's Memory Efficient Radiance Fields (MERF). Now, they're back with another groundbreaking method: Streamable Memory Efficient Radiance Fields, or SMERF.

Michael Rubloff

Dec 13, 2023

Research

The MERF that turned into a SMERF

For the long time readers of this site, earlier this year, we looked into Google Research's Memory Efficient Radiance Fields (MERF). Now, they're back with another groundbreaking method: Streamable Memory Efficient Radiance Fields, or SMERF.

Michael Rubloff

Dec 13, 2023

Research

The MERF that turned into a SMERF

For the long time readers of this site, earlier this year, we looked into Google Research's Memory Efficient Radiance Fields (MERF). Now, they're back with another groundbreaking method: Streamable Memory Efficient Radiance Fields, or SMERF.

Michael Rubloff

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Featured

Featured

Research

Gaustudio

Gaussian Splatting methods have continued to pour in over the first three months of the year. With the rate of adoption, being able to merge and compare these methods, shortly after their release would be amazing.

Michael Rubloff

Apr 8, 2024

Gaustudio

Research

Gaustudio

Gaussian Splatting methods have continued to pour in over the first three months of the year. With the rate of adoption, being able to merge and compare these methods, shortly after their release would be amazing.

Michael Rubloff

Apr 8, 2024

Gaustudio

Research

Gaustudio

Michael Rubloff

Apr 8, 2024

Gaustudio

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

SplaTV

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

SplaTV

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Michael Rubloff

Mar 15, 2024

SplaTV

Research

The MERF that turned into a SMERF

For the long time readers of this site, earlier this year, we looked into Google Research's Memory Efficient Radiance Fields (MERF). Now, they're back with another groundbreaking method: Streamable Memory Efficient Radiance Fields, or SMERF.

Michael Rubloff

Dec 13, 2023

SMERF

Research

The MERF that turned into a SMERF

For the long time readers of this site, earlier this year, we looked into Google Research's Memory Efficient Radiance Fields (MERF). Now, they're back with another groundbreaking method: Streamable Memory Efficient Radiance Fields, or SMERF.

Michael Rubloff

Dec 13, 2023

SMERF

Research

The MERF that turned into a SMERF

Michael Rubloff

Dec 13, 2023

SMERF