Haolin Li

Jinyang Liu

Mario Sznaier

Octavia Camps

Photo-realistic image rendering from scene 3D reconstruction is a fundamental problem in 3D computer vision. This domain has seen considerable advancements owing to the advent of recent neural rendering techniques. These techniques predominantly aim to focus on learning volumetric representations of 3D scenes and refining these representations via loss functions derived from their rendering. Among these, 3D Gaussian Splatting (3D-GS) has emerged as a preferred method, surpassing Neural Radiance Fields' (NeRFs) quality and rendering speed. 3D-GS uses parameterized 3D Gaussians to model both spatial locations and color information, combined with a tile-based fast rendering technique. Despite its superior performance, using 3D Gaussian kernels has inherent limitations in accurately representing discontinuous functions, notably at edges and corners corresponding to shape discontinuities, and across varying textures due to color discontinuities. In this paper, we introduce 3D Half-Gaussian (\textbf{3D-HGS}) kernels, which can be used as a plug-and-play kernel, to address this issue. Our experiments demonstrate their capability to improve the performance of current 3D-GS related methods and achieve state-of-the-art rendering quality performance on various datasets without compromising their rendering speed.

PDF URL