Radiance field methods have achieved photorealistic novel view synthesis and geometry reconstruction. But they are mostly applied in per-scene optimization or small-baseline settings. While several recent works investigate feed-forward reconstruction with large baselines by utilizing transformers, they all operate with a standard global attention mechanism and hence ignore the local nature of 3D reconstruction. We propose a method that unifies local and global reasoning in transformer layers, resulting in improved quality and faster convergence. Our model represents scenes as Gaussian Volumes and combines this with an image encoder and Group Attention Layers for efficient feed-forward reconstruction. Experimental results demonstrate that our model, trained for two days on four GPUs, demonstrates high fidelity in reconstructing 360 deg radiance fields, and robustness to zero-shot and out-of-domain testing. Our project Page: https://apchenstu.github.io/LaRa/.
Anpei Chen
Haofei Xu
Stefano Esposito
Siyu Tang
Andreas Geiger