Shi Chen

Erik Sandström

Sandro Lombardi

Siyuan Li

Martin R. Oswald

Achieving truly practical dynamic 3D reconstruction requires online operation, global pose and map consistency, detailed appearance modeling, and the flexibility to handle both RGB and RGB-D inputs. However, existing SLAM methods typically merely remove the dynamic parts or require RGB-D input, while offline methods are not scalable to long video sequences, and current transformer-based feedforward methods lack global consistency and appearance details. To this end, we achieve online dynamic scene reconstruction by disentangling the static and dynamic parts within a SLAM system. The poses are tracked robustly with a novel motion masking strategy, and dynamic parts are reconstructed leveraging a progressive adaptation of a Motion Scaffolds graph. Our method yields novel view renderings competitive to offline methods and achieves on-par tracking with state-of-the-art dynamic SLAM methods.

PDF URL