Simeon Adebola

Chung Min Kim

Justin Kerr

Shuangyu Xie

Prithvi Akella

Jose Luis Susa Rincon

Eugen Solowjow

Ken Goldberg

Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.

PDF URL