High-fidelity reconstruction of surgical scene is a fundamentally crucial task to support many applications, such as intra-operative navigation and surgical education. However, most existing methods assume the ideal surgical scenarios - either focus on dynamic reconstruction with deforming tissue yet assuming a given fixed camera pose, or allow endoscope movement yet reconstructing the static scenes. In this paper, we target at a more realistic yet challenging setup - free-pose reconstruction with a moving camera for highly dynamic surgical scenes. Meanwhile, we take the first step to introduce Gaussian Splitting (GS) technique to tackle this challenging setting and propose a novel GS-based framework for fast reconstruction, termed \textit{Free-DyGS}. Concretely, our model embraces a novel scene initialization in which a pre-trained Sparse Gaussian Regressor (SGR) can efficiently parameterize the initial attributes. For each subsequent frame, we propose to jointly optimize the deformation model and 6D camera poses in a frame-by-frame manner, easing training given the limited deformation differences between consecutive frames. A Scene Expansion scheme is followed to expand the GS model for the unseen regions introduced by the moving camera. Moreover, the framework is equipped with a novel Retrospective Deformation Recapitulation (RDR) strategy to preserve the entire-clip deformations throughout the frame-by-frame training scheme. The efficacy of the proposed Free-DyGS is substantiated through extensive experiments on two datasets: StereoMIS and Hamlyn datasets. The experimental outcomes underscore that Free-DyGS surpasses other advanced methods in both rendering accuracy and efficiency. Code will be available.

PDF URL