Bhavya Sai Nukapotula

Rishabh Tripathi

Seth Pregler

Dileep Kalathil

Srinivas Shakkottai

Theodore S. Rappaport

Channel state information (CSI) is essential for adaptive beamforming and maintaining robust links in wireless communication systems. However, acquiring CSI incurs significant overhead, consuming up to 25\% of spectrum resources in 5G networks due to frequent pilot transmissions at sub-millisecond intervals. Recent approaches aim to reduce this burden by reconstructing CSI from spatiotemporal RF measurements, such as signal strength and direction-of-arrival. While effective in offline settings, these methods often suffer from inference latencies in the 5--100~ms range, making them impractical for real-time systems. We present GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels, the first algorithm to break the 1 ms latency barrier while maintaining high accuracy. GSpaRC represents the RF environment using a compact set of 3D Gaussian primitives, each parameterized by a lightweight neural model augmented with physics-informed features such as distance-based attenuation. Unlike traditional vision-based splatting pipelines, GSpaRC is tailored for RF reception: it employs an equirectangular projection onto a hemispherical surface centered at the receiver to reflect omnidirectional antenna behavior. A custom CUDA pipeline enables fully parallelized directional sorting, splatting, and rendering across frequency and spatial dimensions. Evaluated on multiple RF datasets, GSpaRC achieves similar CSI reconstruction fidelity to recent state-of-the-art methods while reducing training and inference time by over an order of magnitude. By trading modest GPU computation for a substantial reduction in pilot overhead, GSpaRC enables scalable, low-latency channel estimation suitable for deployment in 5G and future wireless systems. The code is available here: \href{https://github.com/Nbhavyasai/GSpaRC-WirelessGaussianSplatting.git}{GSpaRC}.

PDF URL