Abigail N. Poteshman
Francesco Ricci
Jeffrey B. Neaton
Electric polarization in the absence of an externally applied electric field is a key property of polar materials, but the standard interpolation-based ab initio approach to compute polarization differences within the modern theory of polarization presents challenges for automated high-throughput calculations. Berry flux diagonalization [J. Bonini et. al, Phys. Rev. B 102, 045141 (2020)] has been proposed as an efficient and reliable alternative, though it has yet to be widely deployed. Here, we assess Berry flux diagonalization using ab initio calculations of a large set of materials, introducing and validating heuristics that ensure branch alignment with a minimal number of intermediate interpolated structures. Our automated implementation of Berry flux diagonalization succeeds in cases where prior interpolation-based workflows fail due to band-gap closures or branch ambiguities. Benchmarking with ab initio calculations of 176 candidate ferroelectrics, we demonstrate the efficacy of the approach on a broad range of insulating materials and obtain accurate effective polarization values with fewer interpolated structures than prior automated interpolation-based workflows. Our real-space heuristics that can predict gauge stability a priori from ionic displacements enable a general automated framework for reliable polarization calculations and efficient high-throughput screening of chemically and structurally diverse polar insulators. These results establish Berry flux diagonalization as a robust and efficient method to compute the effective polarization of solids and to accelerate the data-driven discovery of functional polar materials.
PDF URL