Gaussian splatting has emerged as a powerful technique for reconstruction of 3D scenes in computer graphics and vision. However, conventional implementations often suffer from inefficiencies, limited flexibility, and high computational overhead, which constrain their adaptability to diverse applications. In this paper, we present LiteGS,a high-performance and modular framework that enhances both the efficiency and usability of Gaussian splatting. LiteGS achieves a 3.4x speedup over the original 3DGS implementation while reducing GPU memory usage by approximately 30%. Its modular design decomposes the splatting process into multiple highly optimized operators, and it provides dual API support via a script-based interface and a CUDA-based interface. The script-based interface, in combination with autograd, enables rapid prototyping and straightforward customization of new ideas, while the CUDA-based interface delivers optimal training speeds for performance-critical applications. LiteGS retains the core algorithm of 3DGS, ensuring compatibility. Comprehensive experiments on the Mip-NeRF 360 dataset demonstrate that LiteGS accelerates training without compromising accuracy, making it an ideal solution for both rapid prototyping and production environments.
PDF URL