Hao Wang

Ying Zhou

Haoyu Zhao

Rui Wang

Qiang Hu

Xing Zhang

Qiang Li

Zhiwei Wang

3D Gaussian Splatting (3DGS) has emerged as a pivotal technique for real-time view synthesis in colonoscopy, enabling critical applications such as virtual colonoscopy and lesion tracking. However, the vanilla 3DGS assumes static illumination and that observed appearance depends solely on viewing angle, which causes incompatibility with the photometric variations in colonoscopic scenes induced by dynamic light source/camera. This mismatch forces most 3DGS methods to introduce structure-violating vaporous Gaussian blobs between the camera and tissues to compensate for illumination attenuation, ultimately degrading the quality of 3D reconstructions. Previous works only consider the illumination attenuation caused by light distance, ignoring the physical characters of light source and camera. In this paper, we propose ColIAGS, an improved 3DGS framework tailored for colonoscopy. To mimic realistic appearance under varying illumination, we introduce an Improved Appearance Modeling with two types of illumination attenuation factors, which enables Gaussians to adapt to photometric variations while preserving geometry accuracy. To ensure the geometry approximation condition of appearance modeling, we propose an Improved Geometry Modeling using high-dimensional view embedding to enhance Gaussian geometry attribute prediction. Furthermore, another cosine embedding input is leveraged to generate illumination attenuation solutions in an implicit manner. Comprehensive experimental results on standard benchmarks demonstrate that our proposed ColIAGS achieves the dual capabilities of novel view synthesis and accurate geometric reconstruction. It notably outperforms other state-of-the-art methods by achieving superior rendering fidelity while significantly reducing Depth MSE. Code will be available.

PDF URL