In the 6G era, the demand for higher system throughput and the implementation of emerging 6G technologies require large-scale antenna arrays and accurate spatial channel state information (Spatial-CSI). Traditional channel modeling approaches, such as empirical models, ray tracing, and measurement-based methods, face challenges in spatial resolution, efficiency, and scalability. Radiance field-based methods have emerged as promising alternatives but still suffer from geometric inaccuracy and costly supervision. This paper proposes RF-PGS, a novel framework that reconstructs high-fidelity radio propagation paths from only sparse path loss spectra. By introducing Planar Gaussians as geometry primitives with certain RF-specific optimizations, RF-PGS achieves dense, surface-aligned scene reconstruction in the first geometry training stage. In the subsequent Radio Frequency (RF) training stage, the proposed fully-structured radio radiance, combined with a tailored multi-view loss, accurately models radio propagation behavior. Compared to prior radiance field methods, RF-PGS significantly improves reconstruction accuracy, reduces training costs, and enables efficient representation of wireless channels, offering a practical solution for scalable 6G Spatial-CSI modeling.

PDF URL