Xiaotong Huang
He Zhu
Tianrui Ma
Yuxiang Xiong
Fangxin Liu
Zhezhi He
Yiming Gan
Zihan Liu
Jingwen Leng
Minyi Guo
3D Gaussian splatting (3DGS) has emerged as a promising direction for SLAM due to its high-fidelity reconstruction and rapid convergence. However, 3DGS-SLAM algorithms remain impractical for mobile platforms due to their high computational cost, especially for their tracking process. This work introduces Splatonic, a sparse and efficient real-time 3DGS-SLAM algorithm-hardware co-design for resource-constrained devices. Inspired by classical SLAMs, we propose an adaptive sparse pixel sampling algorithm that reduces the number of rendered pixels by up to 256$\times$ while retaining accuracy. To unlock this performance potential on mobile GPUs, we design a novel pixel-based rendering pipeline that improves hardware utilization via Gaussian-parallel rendering and preemptive $α$-checking. Together, these optimizations yield up to 121.7$\times$ speedup on the bottleneck stages and 14.6$\times$ end-to-end speedup on off-the-shelf GPUs. To further address new bottlenecks introduced by our rendering pipeline, we propose a pipelined architecture that simplifies the overall design while addressing newly emerged bottlenecks in projection and aggregation. Evaluated across four 3DGS-SLAM algorithms, Splatonic achieves up to 274.9$\times$ speedup and 4738.5$\times$ energy savings over mobile GPUs and up to 25.2$\times$ speedup and 241.1$\times$ energy savings over state-of-the-art accelerators, all with comparable accuracy.
PDF URL